Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Polyphenole

Подписчиков: 0, рейтинг: 0

Polyphenole sind chemische Verbindungen aus der Stoffgruppe der Phenole beziehungsweise Hydroxyaromaten. Es gibt in der Literatur unterschiedliche Definitionen, welche Verbindungen den Polyphenolen zugeordnet werden können. Zumeist werden natürliche, in Pflanzen vorkommende Verbindungen, die mehr als einen Phenolring enthalten, den pflanzlichen Polyphenolen zugeordnet. Vereinzelt werden auch aromatische Verbindungen, die zwei oder mehr direkt an einen aromatischen Ring gebundene Hydroxygruppen enthalten, als Polyphenole bezeichnet.

Natürliche Polyphenole kommen in Pflanzen als sekundäre Pflanzenstoffe vor. Sie stellen bioaktive Substanzen wie Farbstoffe, Geschmacksstoffe und Tannine dar und sollen die Pflanze vor Fressfeinden (Prädatoren) schützen oder durch ihre Farbe Insekten zur Bestäubung anlocken. Manchen Pflanzen dienen Polyphenole aufgrund ihrer antioxidativen Wirkung und der Filterung energiereicher UV-B-Strahlung auch als Schutz für den Photosynthese-Apparat. Weiterhin sind Polyphenole Grundbausteine wichtiger Biopolymere wie Lignin und Suberin.

Zu den Polyphenolen zählen zahlreiche unterschiedliche Pflanzenstoffe, unter anderem die Farbstoffe der Flavonoide und Anthocyane, Procyanidine, Benzoesäurederivate (z. B. die Hydroxybenzoesäuren wie Vanillinsäure, die Trihydroxybenzoesäuren wie Gallussäure und die Dihydroxybenzoesäuren wie Protocatechusäure), Zimtsäurederivate (die Hydroxyzimtsäuren wie Kaffeesäure und p-Cumarsäure) und Stilbenderivate (etwa Resveratrol). Insgesamt sind über 8000 verschiedene polyphenolische Verbindungen in Pflanzen identifiziert; ihre gemeinsame Vorstufe ist Phenylalanin bzw. dessen Vorläufer Shikimisäure.

Herkunft

Pflanzen mit hohem Polyphenolgehalt sind beispielsweise die Echte Walnuss, die Blätter und Trauben der Weinreben, die Schale und das Fruchtfleisch der Mangostanfrucht (Garcinia mangostana), der Saft des Granatapfels (Punica granatum), der unter anderem Punicalagin, Ellagsäure und Gallussäure enthält, Ginkgo, Tee, Zistrosen und die Samen von Perilla (Perilla frutescens, auch „Schwarznessel“ oder irreführend „Wilder Sesam“ genannt). Allgemein weisen viele Kräuter einen vergleichsweise hohen Polyphenolgehalt auf, wie zum Beispiel Pfefferminze, Oregano und Salbei. Auch einige als Superfood bezeichnete Lebensmittel, darunter u. a. Kakaopulver, die Aronia (Apfelbeere) sowie die Heidelbeere, besitzen einen hohen Polyphenolgehalt. Polyphenole sind auch in Gehölzen zu finden. In Oliven ist insbesondere Hydroxytyrosol enthalten, und aus der Rinde von Pinien und aus Lärchenholz werden Flavonoide für den Einsatz in der Medizin extrahiert.

Verschiedene Polyphenole lösen unterschiedliche Geschmacksempfinden im Mund aus. Bereits geringe Mengen einiger Polyphenole können ein Lebensmittel für den Menschen bitter schmecken lassen.

Wirkung

Polyphenole helfen, wenn sie im Rahmen einer pflanzenbasierten Ernährung konsumiert werden, dabei den Blutdruck zu senken. Somit wirken sie sich positiv auf die Gefäßgesundheit aus.

Viele Polyphenole gelten als gesundheitsfördernd. Einige Polyphenole wirken wie andere Antioxidantien unter anderem entzündungshemmend und krebsvorbeugend. Im Rahmen verschiedener Studien mit Granatapfel-Polyphenolen wurde ein gehemmtes Wachstum von Krebszellen in der Brustdrüse, Lunge, Haut, dem Darm und der Prostata beobachtet. Ein ähnlicher Nachweis gelang für den über das Vegetationswasser von Oliven gewonnenen Phytokomplex (Verbascosid, Tyrosol, Chlorogensäure, Oleuropein Aglykon), der durch die Wasserlöslichkeit der Polyphenole etwa 20 mal höher ist als der im Olivenöl enthaltene.

Flavonoide und Anthocyane schützen Körperzellen vor freien Radikalen und verlangsamen die Zelloxidation. Sie vermindern die Fettablagerungen (Plaques) in den Blutgefäßen und beugen damit der Arteriosklerose vor. So reduzierte sich die Dicke der inneren Gefäßwand der Arteria carotis und ihren Aufzweigungen, bei Patienten mit Arteriosklerose nach einjährigem Verzehr von Granatapfelsaft um bis zu 30 %, während sie in der Kontrollgruppe um bis zu 9 % zunahm.

Andere Polyphenole wie das aus der Lärche gewonnene Taxifolin wurden vielfach zur Behandlung von Hirninfarkt (ischämischer Schlaganfall) und seinen Folgeerscheinungen, zerebraler Thrombose, koronarer Herzkrankheit und Angina Pectoris eingesetzt.

Eine In-vivo-Studie mit weiblichen Mäusen, die spontanen Haarausfall auf dem Kopf, Nacken und Rücken entwickelt hatten, ergab, dass bei 33 % der Mäuse aus Gruppe A, die Polyphenol-Extrakt aus grünem Tee mit ihrem Trinkwasser erhalten hatten, ein signifikantes Nachwachsen der Haare während der sechs Monate dauernden Behandlung beobachtet wurde. Kein Haarwuchs war unter den Mäusen der Kontrollgruppe B, die nur Wasser erhielten, zu beobachten.

Polyphenole aus Weintrauben hemmen die Bakterienart Streptococcus mutans, die zum Aufbau von Zahnbelägen (Plaque) und sogenannten Biofilmen auf den Zähnen beiträgt. Durch ihre bakterizide Wirkung hemmen Polyphenole die schädlichen Auswirkungen der Bakterien und wirken so auch vorbeugend gegen Zahnkaries.

Gleichzeitig können sich Polyphenole aus pflanzlicher Nahrung an Verdauungsenzyme binden und so die Nährstoffaufnahme im Darm vermindern. Beim gesunden Menschen verhindern die im Speichel enthaltenen prolinreichen Proteine diese Wirkung, indem sie einen im Verdauungstrakt stabilen Komplex mit den Polyphenolen bilden.

Eine 2013 veröffentlichte systematische Übersichtsarbeit liefert Hinweise darauf, dass Isoflavone einen präventiven Effekt auf die Knochengesundheit haben. So konnte die Knochenmineraldichte bei Frauen durch eine Isoflavonsupplementation signifikant um 54 % gesteigert werden.

Die Polyphenole aus Tee und Kakao können durch den Zusatz von Milch in ihren Wirkungen behindert werden, weil das Kasein der Milch ebenfalls prolinreich ist.

Polyphenole lassen sich mit Eisen(III)-Chlorid-Lösungen nachweisen. Sie reagieren mit Eisen(III)-Ionen zu grün bis blau gefärbten Komplexverbindungen.

Toxikologie

Viele Polyphenole besitzen in geringer Dosis, so wie sie in Pflanzen vorkommen, positive biologische Eigenschaften, können allerdings bei In-vitro-Untersuchungen und in hoher Dosierung auch toxische Wirkungen zeigen. Werden sie hochdosiert oder langdauernd angewendet, sind solche Wirkungen auch im Organismus möglich, weshalb solche Dosierungen und/oder Daueranwendungen eher unüblich sind. Apigenin, Quercetin, Taxifolin und Kaempferol beispielsweise wirken cytostatisch, weshalb sie und einige andere Polyphenole, z. B. Brenzcatechin, Genistein und Gossypol, als gesundheitsschädlich eingestuft sind, Quercetin sogar als giftig. Polyphenole werden im menschlichen Körper meist nicht unverändert resorbiert und zeigen daher abhängig von der chemischen Struktur recht unterschiedliches pharmakokinetisches Verhalten, weshalb Ergebnisse von In-vitro-Experimenten mit Polyphenolen alles in allem nur eingeschränkt auf den Menschen übertragbar sind. Zudem wird ihre Wirkung noch durch den sog. Matrixeffekt anderer sekundärer Pflanzenstoffe moduliert. Für Quercetin beispielsweise ist eine mutagene Wirkung nachgewiesen, liegt es dagegen in einer Pflanzen-Matrix vor, die andere Polyphenole wie etwa Gerbstoffe enthält, überwiegt insgesamt eine antimutagene Wirkung des Pflanzenextraktes.

Literatur und weiterführende Quellen

  • M. Aviram u. a.: Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. In: Clinical nutrition. Band 23, Nummer 3, Juni 2004, S. 423–433 (wonderfulpomegranateresearch.com, PDF), doi:10.1016/j.clnu.2003.10.002. PMID 15158307.
  • Bonnie Tay Yen Ping: Chemical constituents of Garcinia mangostana, G. Parvifolia, G. griffiti, and G. diversifolia (Guttifera e) and their biological activities. Dissertation from University Putra Malaysia, 1996.
  • P. Chanarat, N. Chanarat, M. Fikojara, T. Nagumo: Immunopharmacological activity of polysaccharide from the pericarp of mangosteen garcinia; phagocytic intracellular killing activities. In: J Med Assoc Thai. 1, 1997, S. 149–154.
  • S. X. Chen, M. Wan, B. N Loh: Active constituents against HIV-1 protease from Garcinia mangostana. In: Planta Med. 62(4), Aug 1996, S. 381–382.
  • S. A. Dahanukar, R. A. Kulkarni, N. N. Rege: Pharmacology of Medicinal Plants and Natural Products. In: Indian Journal of Pharmacology. 2000, S. 96.

Новое сообщение